Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation Design Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Remotely Connected Electric Field Generator

for Particle Separation in a Fluid

Team May1612

Timothy Dee, Justin Long, Brandon McDonnell Iowa State University

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

- Initial Implementation
- Design
- Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design
- Implementation
- Problems

Final Design

- Hardware Components Software Components
- Current State
- Questions

 A dielectric particle in a non uniform electric field experiences a force

Dielectrophoresis (DEP)

- Different potential fields and frequencies has an effect on the net force
- First studied in 1950s by Herbert Pohl

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Real World Application

Dielectrophoresis

- Recently revived due to the ability to manipulate micro-particles and cells.
- · Potential to separate particles in spinal fluid
- Act as filter
- Research in separating cancerous cells from healthy cells
- Separate platelets from whole blood
- · Separate red and white blood cells
- · Separate Strains of bacteria and viruses from living cells

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation Design Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

- A system to aid in of DEP research
- Allow for quicker setup times
- · Control Voltage and Frequency via the web
 - 1 to 60 VPP
 - 10k to 1Mhz
- Hold output for long time periods
- Small Form Factor
- · Easy to use

Project Description

Plug and play

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation Design Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design
- Implementation
- Problems

Final Design

- Hardware Components Software Components
- **Current State**
- Questions

Project Structure

- Raspberry Pi
- Web Interface
- Web Server
- Frequency Control Solution
- Voltage Control Solution

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

- **Project Overview**
- Initial Implementation
- Design
- Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design
- Implementation
- Problems

Final Design

- Hardware Components Software Components
- Current State
- Questions

Initial Implementation

Raspberry Pi

- Host web server
- · Remote manipulation of circuit output
- Web interface can provide additional functionality
- GPIO pins input to circuit
- Circuit Output
 - Frequency generated by GPIO pin
 - GPIO waveform integrated to get sine wave
 - · Sine wave amplified to form output

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Raspberry Pi

Concerns

- Complexity of programming
- · GPIO pins may only be turned on and off
- · On-off mechanism must be used to generate waveform
- Current load
- Circuit Output
 - · Complexity of construction
 - No guarantees about cleanliness of GPIO pin waveform
 - High risk of failure

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Minigen Function Generator

- SPI communications
- Small form factor
- Output programmable frequency
- Produces 1 Khz to 4 Mhz waveforms

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

- Initial Implementation
- Design
- Problems

Intermediate

Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

- Implementation
- Problems

Final Design

Hardware Components Software Components

Current State

Questions

Intermediate Design

- Raspberry Pi controls Integrated circuit components
- Minigen used to produce frequency
- Digital Potentiometers
 - SPI communications
 - · Vary resistance to control amplifier
- · Amplifier controls voltage output from circuit

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Digital Potentiometer Amplifier Circuit

Properties

Utilizes digital potentiometer as feedback resistor

$$V_{out} = rac{-R_F}{R_{IN}} * Minigen_{SIGNAL}$$

Problems

- Distortion of signal
- Very low resistance with AC signal

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

- **Project Overview**
- Initial Implementation
- Design
- Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design Implementation
- Problems

Final Design

- Hardware Components Software Components
- Current State
- Questions

MOSFET Amplifier

Properties

- Utilizes digital pot in a different way
- Amplification utilizes transistor

- Suggested by Minnetronix
- Distortion of signal remains
- Concluded digital potentiometer is source of problem

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation Problems

Final Design

Hardware Components Software Components

Current State

Questions

Redesign Amplifier

Idea Overview

- Previous problems stem from voltage modification solutions
- Solution: Use integrated circuit component to modify voltage

Amplifier Properties

- Three stages of amplification
- One PGA and two stages with constant gain
 - 20 V_{pp} per stage
 - · Summing amplifier sums stages
 - PGA achieves 8 steps within one stage
 - Switches increase output by 20 Vpp
- Use transistors as switches flipped using GPIO pins

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Configuration

Programmable Gain Amplifier(PGA)

- Three pins encode gain
- 8 Gain Options from 0 to 7

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation Design Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Connections Description

- Raspberry Pi connected to components
- Output of Minigen goes to input of PGA
- All three stages input to summing amplifier

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Solid State Relay (SSR)

SSR Circuit Implementation

- Uses LED and photo-resistor to allow current though
- · Hoped to fix waveform distortion issues

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

- **Project Overview**
- Initial Implementation
- Design
- Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design
- Implementation
- Problems

Final Design

- Hardware Components Software Components
- Current State
- Questions

Problems

Programmable Gain Amplifier(PGA)

- Easy to destroy
- Functionally works well

Transistor Switch Circuit

BJT Leaks when logically off

Solid State Relay

- Could not function at high enough frequency
- Even moderately high AC signals at input cause output of 0

Overview

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

- **Project Overview**
- Initial Implementation
- Design
- Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design
- Implementation
- Problems

Final Design

- Hardware Components Software Components
- Current State
- Questions

- Raspberry Pi controls integrated circuit components
- Minigen Function Generator
 - SPI communications
 - Produces frequency 10 Khz 4 Mhz
- Programmable Gain Amplifier(PGA)
 - GPIO communications
 - 8 voltage options (0-7)
- Two-stage amplification
- Summing Amplifier
 - Sums output from amplification stages

Systems Diagram

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

- Timothy Dee, Justin Long, Brandon McDonnell
- Dielectrophoresis
- **Project Overview**
- Initial Implementation
- Design
- Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design
- Implementation
- Problems
- Final Design
- Hardware Components
- Software Components
- Current State
- Questions

Amplifier Circuit

• Two stages with PGA and constant gain amplifiers

- Upper stage constant amplifier Gain 7.5
- Lower stage constant amplifier Gain 1.07
- PGA's both having variable gain
- Summing amplifier

Timothy Dee, Justin Long, Brandon McDonnell

- Dielectrophoresis Project Overview Initial Implementation
- Design Problems
- Intermediate Implementation 1
- Design Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design Hardware Components Software Components

Current State Questions

Physical Implementation

- Raspberry Pi connected to break-out board
- Break-out board connection GPIO pins to
 - PGA
 - Minigen
- Minigen output to PGA
- PGA output to constant gain amplifier within same stage
- Constant gain amplifiers output to summing amplifier

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

- **Project Overview**
- Initial Implementation

Design Problems

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components
Software Components

Current State

Questions

• Hosted Locally

Web Interface

- Able to be seen on intranet
- Voltage and Frequency controls
- Provides Additional Functionality

Set Voltage and Frequency

Voltage (V): Frequency (KHz):	1		 Sine Triangle Square 	Update
Voltage(V)		Frequency(Khz)	Time(mi	nutes)
0		0	a	
0		0	0	
0		0	0	
0		0	0	
0		0	0	
0		0	0	
0		0	0	
0		0	0	
0		0	0	
0		0	0	

Go-Stop Reset

1.22

Remotely Connected Electric Field Generator

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components
Software Components

Current State

Questions

Software Components

- Script organization of the Raspberry Pi
- Delegation of Responsibility
- Scripts correspond to hardware components

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation Design Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Current State

Problems

- Current op-amps
 - have insufficient Gain-Bandwidth Product
 - 2 Slew rate too low

2 Current draw from Raspberry Pi

Solutions

- An op-amp with necessary specifications exists, 598-1449-ND
- 2 Ensure few additional components connected to the Pi

Cost

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation Design

Problems

Intermediate Implementation 1

Design Implementation and

Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Itemized Expenditures

Item	Quantity	Price(\$)
Raspberry Pi 3	1	49.99
Kit		
Micro SD card	1	9.99
Minigen Functi-	1	29.95
on Generator		
Op Amps	3	4.41
PGA	2	8.00
Miscellaneous	-	10.5
Components		
Total	-	112.84

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Logistical Setbacks

- Lack of manpower
- Loss of a team member at semester break
- Point of contact left company

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

- **Project Overview**
- Initial Implementation
- Design
- Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design
- Implementation
- Problems

Final Design

Hardware Components Software Components

Current State

Questions

Deliverables

- Raspberry Pi loaded with controlling code
- User manual
- Current circuit implementation
- PCB design
- Simulation files

Set Volkey and Integration

01 1000 House

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation Design Problems

Intermediate Implementation 1

- Design
- Implementation and Problems

Intermediate Implementation 2

- Design
- Implementation
- Problems

Final Design

Hardware Components Software Components

Current State

Questions

Questions?

Discussion Points

- Dielectrophoresis (DEP)
- Circuit Design
- Digital Potentiometer/ Operation Amplifier
- MOSFET/ Programmable Gain Amplifiers (PGA)
- Web Interface
- Final Documentation

Timothy Dee, Justin Long, Brandon McDonnell

Dielectrophoresis

Project Overview

Initial Implementation

Design

Problems

Intermediate Implementation 1

Design

Implementation and Problems

Intermediate Implementation 2

Design

Implementation

Problems

Final Design

Hardware Components Software Components

Current State

Questions

Items

Initial Planning

Work Breakdown

- Project Website
- Reports and documentation
- Circuit Design
- Web Server
- SOC Communications
- PCB Design