
Remotely Connected Electric Field Generator
for Particle Separation in a Fluid

Team May1612

Dee, Timothy
timdee@iastate.edu

Long, Justin
jwlong@iastate.edu

McDonnell, Brandon
bmm@iastate.edu

April 24, 2016

1

Contents
1 Introduction 4

2 Project Definition 4
2.1 Deliverables . 4
2.2 Constraints . 4
2.3 System Analysis . 5

3 Functional Decomposition 5
3.1 Raspberry Pi . 5
3.2 Minigen . 5
3.3 Amplifier Circuit . 6

3.3.1 Programmable Gain Amplifier(PGA) . 7
3.3.2 Amplification Stages . 7
3.3.3 Summing Amplifier . 8

4 Software Components 9
4.1 Technology Choices . 9
4.2 Web Interface . 9
4.3 Web Server . 9
4.4 Modifying Frequency . 10
4.5 Controlling Voltage . 10

4.5.1 Programmable Gain Amplifier(PGA) . 10

5 Cost Considerations 10

6 Testing 11
6.1 Testing Process . 11

6.1.1 Theorize a design . 11
6.1.2 Acquire necessary components . 11
6.1.3 Implement design . 12
6.1.4 Understand problems . 12
6.1.5 Return to step 1 . 12

6.2 Testing Results . 12
6.2.1 Known Issues . 13
6.2.2 Possible Solutions . 13

7 Concluding Remarks 13

A Operation Manual 15
A.1 Quick Setup . 15
A.2 Setup . 15

A.2.1 Purchase a Raspberry Pi . 15
A.2.2 Install Rasbian Linux Operating System on Raspberry Pi . 15
A.2.3 Configure Installation . 16
A.2.4 Place circuit controlling software on the Raspberry Pi . 16
A.2.5 Install software packages on Raspberry Pi . 16
A.2.6 Modify configuration files on the Raspberry Pi . 16
A.2.7 Verify Configuration . 17

A.3 Demo . 17
A.3.1 Power on the Raspberry Pi . 17
A.3.2 Connect the Raspberry Pi to the network . 17
A.3.3 The output of the circuit should connect to capacitive plates used for dielectrophoresis 17
A.3.4 Acquire the IP address of the Raspberry Pi . 17

2

A.3.5 Enter the IP address in the navigation bar of a web browser . 18
A.3.6 Input the desired voltage and frequency values and click update . 18
A.3.7 The output of the circuit can be seen to change to the desired values . 18

B Initial Designs 19
B.1 Frequency Control . 19
B.2 Voltage Control . 19

B.2.1 Digital Potentiometer . 19
B.2.2 Transistor switch . 19
B.2.3 Relay . 19

B.3 Amplification Stages . 20

C Other Considerations 21

D Code 22

3

Abstract

This document details the design and implementation of a re-
motely controlled electric field generator. The goal of this design
is to provide an easy interface for manipulating the output volt-
age and frequency of a circuit utilizing network communications
in order to generate an electric field. This electric field, when ap-
plied to a fluid over a long period of time will cause particles in
the fluid to separate. The hardware and software components
used to accomplish the aforementioned goal are described in de-
tail as well as the interconnections between these components.
A guide describing the procedure by which a person may set up
and use this implementation is provided.

1 Introduction
New research has shown that certain particles may be separated
from fluids through dielectrophoresis. This process involves ap-
plying an electric field to a fluid. The field may be manipulated
in order to attract or repel certain particles. The particles the
electric field will attract or repel depends on characteristics of
the electric filed which may be controlled by varying the voltage
and frequency of the electronics driving the field.

This technology has many useful applications in health care.
The proposed end use of this equipment is for separating parti-
cles contained in bodily fluids, such as spinal fluid. Such medial
applications could be useful in filtering these fluids for testing
purposes.

Being capable of separating though the application of an
electric field would represent an advancement over existing solu-
tions. Separation in this way introduces a new method of testing
which could be more precise when compared to existing tech-
nologies.

Imagine if a centrifuge, an expensive piece of medical testing
equipment which separates particles in bodily fluids, could be
replaced by a much cheaper device. This cheaper device could
even have the potential for more well-defined separation among
particles. Such a device, if it could be made to exist, would have
large, positive, economic consequences for creator. This project
could construct the foundation for such a device.

This project is part of a larger initiative to build a device
which is capable of separating particles in fluids utilizing the di-
electrophoresis phenomenon. This phenomenon works though
the application of a quickly changing electric field. The change
in the electric field affects different types of particles differently
leading to a separation among types of particles. This process
must continue for a long period of time in order for a great de-
gree of separation to occur. Often times this process can take
hours.

2 Project Definition
In this implementation, an electric field is applied to two metal
plates. Through varying the voltage and frequency applied to
these plates, the properties of the electric field may be changed.
Modifying the properties of the electric field will affect separa-
tion of fluids and is therefore desirable.

Our job is to construct a system containing an electronic cir-
cuit capable of providing the voltages and frequencies required
to drive a pair of metal plates. This system must enable the cir-
cuit to be controllable through the use of a web interface. In
addition, a small form factor must be maintained.

The system must be able to generate up to a 60 V peak-peak
sine wave with user-controlled variable frequency from 10 kHz
to 1 MHz. Due to the time requirements of dielectrophoresis,
this output must also be capable of being maintained for long
periods of time. In addition, the user of this system should be
capable of controlling it remotely. The implications of this on
the implementation are that there must be some way of commu-
nicating with the device through a network.

2.1 Deliverables
There are three items which must be constructed for this project:
frequency control circuit, voltage control circuit, and software
components.

For the analog circuit components, functionality of the cir-
cuit will be tested using an oscilloscope to verify the require-
ments have been satisfied. This method can also be used to en-
sure the output signal contains minimal amounts of noise and
distortion.

The construction of this device is the first phase of the
project. After the completion of this component, the device will
be used to experiment with particle separation in various fluid
types. These experiments constitute the remainder of the project.
For these experiments our advisor at Minetronix, John Pritchard,
will be the main source of guidance and testable material.

2.2 Constraints
Constraints on this project fall within the size, voltage, and
portability domains.

The size requirements of this project are directly related to
the portability of the final design. The design requirements spec-
ify this system must be easily and quickly moved around from
one workstation to another. The maximal allowed size is approx-
imately the size of a backpack with smaller sizes being more de-
sirable but not explicitly required. With the electronics currently
being used, these requirements will easily be met.

Another constraint arises from the power supply require-
ments. The power supply must deliver at least 60V DC in or-
der to feed the amplifier circuit. Due to this, the final design
requires a power brick similar to one which would be used to
charge a laptop. Importantly, this would require the device to
be plugged into a wall outlet. This is not seen as an issue. Ev-
ery location this device will operate will most likely have other
equipment with similar power requirements.

In order to use this system, there are other items which are
required apart from the device itself. The first requirement is
a network connection between the device and a computer. This
connection is necessary to be able to interact with the web server
hosted on the Raspberry Pi. Without a computer to interact with
this system there is no practical means of utilizing the device’s
functionality. The next requirement, as mentioned above, is a
network connection to the Raspberry Pi. The third system re-

4

quirement is a standard wall outlet to accommodate the power
needs of the system.

2.3 System Analysis

A user will interface with this system though the web interface.
This web interface may be accessed by typing the IP address of
the device into a standard web browser. The interface will allow
the user to choose the values for Voltage and Frequency. Once
these values have been entered, update scripts on the Raspberry
Pi will set the voltage and frequency output of the circuit accord-
ing to the values entered.

3 Functional Decomposition

This system has four fundamental functional blocks. These in-
clude the Web Interface, Raspberry Pi, Minigen Signal Genera-
tor, and Amplifier Circuit. The project will be described in terms
of these components and their interactions.

3.1 Raspberry Pi

The Raspberry Pi will act as the bridge between the user and the
circuit. The Raspberry Pi will host a web server allowing the
user to interact with the system. Based on the results of this user
interaction, the Raspberry Pi will update the state of the GPIO
pins. The GPIO pins connect to a circuit causing the output to
change based on their state.

In addition to hosting the web server the Raspberry pi is used
to communicate with the Minigen Signal Generator and ampli-
fier circuit. This communication is accomplished via the Rasp-
berry Pi’s SPI interface and GPIO pins respectively.

There are many potential solutions other than the Raspberry
Pi. So what motivated the choice of the Raspberry Pi? The
answer is as would expected, the Raspberry Pi has capabilities
which allow it to act as a communicator between the user and
the circuit. While other devices have similar capabilities, such
as an Arduino, the requirement of having a web interface is a lot
easier to implement on the pi compared to most Arduinos.

Another factor consistent with the goals of the project is the
small form factor of the Raspberry pi. While there was no exact
specification, it was made clear that smaller implementations are
preferred. On top of the above mentioned factors the Raspberry
Pi is also inexpensive. Given all of these factors, the Raspberry
Pi seems like an ideal fit for this project.

3.2 Minigen

The Minigen Function Generator device controls the frequency
output by the circuit. Varying the frequency is accomplished by
writing to registers present on the Minigen. This communica-
tion is completed over SPI between the Raspberry Pi and the
Minigen. The frequency produced is a function of the values
contained in the Minigen’s frequency registers.

The Minigen outputs a waveform from -0.5V to 0.5V. This
waveform may be a triangle, square, or sine wave. The volt-
age output by the Minigen is not variable. Given that the design
specification requires a variable voltage, the voltage needs to be
adjusted separately. Accordingly, the output of the Minigen is
supplied to the input of the amplifier circuit.

The Minigen is controlled by setting five registers, two regis-
ters for frequency, two for phase shift and one as a control. There
exists no need for phase shifting to meet the design require-
ments, however the frequency and control registers are needed.
By having two frequency registers, data can be sent to one reg-
ister while it is not in use, followed by a write to the control
register to use this register. This allows for a nicer gradient, be-
cause the frequency will not change until the entire frequency
register is written. The control register also allows for changing
between sine, square and triangle waveforms. In the event that
the frequency needs to be finely adjusted, this system utilizes the
functionality of the control register to modify the way in which
writes to the frequency registers are received. The way writes
are received by the frequency registers can be varied between
two modes. In one mode, two consecutive 14-bit writes to a fre-
quency register are used. In the other mode, one write to the
lower 14-bits of the 28-bit frequency register is used. This func-
tionality affords the ability to accurately dial in small changes to
the register values quickly.

5

Figure 1: Block Diagram provides an overview of the system components.

Until this point, several functional benefits of the Minigen

Signal Generator have been discussed. An additional benefit
which increases the practicality of this solution is the Minigen’s
small form factor. The small chip size allows the Minigen to fit
easily into a small case with the Raspberry Pi. This is consistent
with the system’s requisite small footprint.

3.3 Amplifier Circuit
As mentioned in the previous section, the output of the Mini-
gen Function Generator is applied to the amplifier circuit as in-
put. The amplifier also receives input from the GPIO pins of the
Raspberry Pi. These GPIO pins act as switches which help to
control the output voltage. Based on these inputs the amplifier
circuit manages the overall voltage and frequency output.

The project requirements state that the system must gener-
ate signals which range from 1Vpp to 60Vpp. To accomplish
this, various circuit components were used to accomplish the
amplification. The overall scheme is to split the output voltages
into three different ranges. One component is used to adjust the
voltage within each of the ranges while other comp are used to
change the range the voltage adjuster is acting within.

A schematic illustrating the amplifier circuit as a whole is
depicted in Figure 2. This diagram follows the signal from the

6

output of the Minigen Function Generator to the overall output
of the circuit after the summing amplifier. The Minigen output
feeds directly into two stages of amplification. Each stage con-
taining a PGA and an amplifier. The upper stage in the diagram
contains a gain of 7.5 while the lower stage contains a gain of 1.

The lower stage has many more components than the top
stage. The reason for this is the OPA552 operational amplifier
which is being used to preform the amplification, is optimized
for a gain of five or more. For gains lower than five, there must
be additional components added. The effect of not adding these
components is a dramatic increase in the frequency of the output.

3.3.1 Programmable Gain Amplifier(PGA)

The programmable gain amplifier or PGA is core mechanism by
which voltage is modified in the circuit. As can be seen in the
circuit diagram 2, There are two PGA’s utilized in the circuit.
Each PGA controls one stage of amplification. The PGA has 8
possible output gains, 0-7. These gains are set though the use
of three GPIO pins. Each GPIO pin is connected to one input
pin on the PGA. The gain of the pga is selected by the binary
number encoded by these bits.

3.3.2 Amplification Stages

There are two amplification stages pictured in Figure 2. Each
of these stages takes input from the Minigen. The first compo-
nent in each stage, the PGA, takes this input, applies a gain K
in range 0to7, then inputs this signal to an OPA552 operational
amplifier. These amplifiers output to the input of the summing
amplifier.

The gain, A, of these amplifiers after the PGA’s are chosen
to maximize the voltage resolution. The overall voltage require-
ment is the circuit must output 1to60Vpp. In order for the out-
put of the summing amplifier, which follows the amplification
stages, to be capable of outputting 60Vpp the output of all volt-
age stages must sum to this value.

A1 = gainofstage1amp

A2 = gainofstage2amp

APGA = maxgainofPGA

Vm1 = maxvoltageofstage1

Vm2 = maxvoltageofstage2

Vm1 + Vm2 = 30V

Vm1 =
Vm2

7

Vm1 + 7Vm1 = 30V

8Vm1 = 30V

Vm1 =
30V

8

Vm1 = 3.75V

Vm2 = 26.25V

APGA = 3.5V

A1 =
Vm1

APGA
=

Vm1

3.5

A2 =
Vm2

APGA
=

Vm2

3.5

A1 = 1.07
V

V

A2 = 7.5
V

V

The above equation derives the appropriate gain for the am-
plifier in both stages of the circuit. These Gains A1 and A2

represent these gains. Notice that one of the gains is greater than
5 while the other has a gain close to unity. This is an issue for us
because the op-amp, OPA552, which we are using in our circuit
is optimized for a gain of 5 or greater.

If the gain is under 5 additional components are necessary to
make the op-amp stable. Unfortunately these components have
two negate affects. First, these components act as a filter. Sec-
ond, there components apply a phase shift to the output. This
increases the complexity of the circuit. There must be some
additional components added to ensure the phase shift of both
amplification stages are the same.

7

op_amp

OPA552R1

220 Ω

R2

220 Ω C3

100 pF

Minigen

sine

800 kHz

V2

30 V

V3

30 V

op_amp1

OPA552R4

1.33 kΩ

R5

10 kΩ

V5

30 V

V6

30 V

op_amp2

OPA552

V7

30 V

V8

30 V

R16

220 Ω

R15

220 Ω

R10

220 Ω

C15

1 µF

C16

1 µF

C14

1 µF

C17

1 µF

C18

1 µF

C19

1 µF

V_out

V_out1

V_out2

C21

200 pF

C22

100 pF

C23

100 nF

PGA

V_in V_out

G_0

G_1

G_2

A_GND V+

V-

V9

5 V

V10

30 V
C24

1 µF

GPIO_0

GPIO_2

GPIO_1

PGA

V_in V_out

G_0

G_1

G_2

A_GND V+

V-

V11

5 V

V12

30 V
C25

1 µF

GPIO_0

GPIO_2

GPIO_1

Figure 2: Amplifier circuit design to vary voltage within range 1Vpp to 60Vpp.

op_amp2

OPA552

V-

30 V

V+

30 V

V_out

C1

1 nF

Cf

135 pF

Rf

100 Ω

V1

sine

1 MHz

R1

100 Ω

V_in

R12

100 Ω C12

1 nF

C14

1 µF

C15

1 µF

gain of 1 op-amp with
frequency compensation and phase shift correction.

There are two amplification stages. Due to the frequency
compensation necessary one one stage, the phase shifts of these
stages were initially different. In order to make the phase shits
the same, a resistor in series with a capacitor to ground were ap-
plied to both the input and output of the frequency compensation

amplifier. The end result is that we are able to modify the phase
shift according to this transfer function:

Vout
Vin

=
−Rf

(−j ∗ ω ∗ C12 ∗R12 + 1) ∗ (j ∗ ω ∗ Cf ∗Rf + 1) ∗R1

This function allowed us to predict the phase shift amount
for a given frequency. This knowledge allowed the modification
of the values to reproduce the phase shift present in the other
stage.

3.3.3 Summing Amplifier

The summing amplifier is the last component in the amplifier
circuit. The overall voltage range which needs to be produced
is divided into two segments. Each of these segments have their
output connected as input to the summing amplifier. The advan-
tage of this design is that it allows for an increased number of
voltage steps compared to what is allowed for by a single PGA.

The output of the summing amplifier conforms to the above
equation. As can be seen in this listing, the amplifier will take
take the input signals and sum them. If, for example, the input
voltages are 3V and 10V , the output will be 13V .

The negative effects of choosing to implement the summing
in this way is that large constraints are placed on the amplifier.

8

The summing amplifier will need to be capable of producing a
sine wave at 60Vpp and 1Mhz . This means the slew rate of this
op-amp will need to be 120 V

µs
. These constraints are fairly lim-

iting and require an expensive op-amp to meet.

4 Software Components
The web interface displayed by the web server hosted on the
Raspberry Pi is the user’s window into the system. Through this
interface, the user can seamlessly control various components of
the system cause the desired voltage and frequency to be pro-
duced. Previously covered are the hardware components used
to accomplish this. This section describes the software counter-
parts used to control the hardware.

4.1 Technology Choices
There are many tools to accomplish any job. In the software do-
main there are many utilities and programming languages which
could have been used to accomplish the goals set forth in this
project description. Why then did were apache 2 and python
chosen? What could be the advantage of using these software
tools over others? This section seeks to answer the aforemen-
tioned questions.

Apache 2 was chosen as our web server due to it’s ease of
installation and use, good documentation, and large user base.
In some respects, Apache 2 is often the default choice for web
server applications. Only if there are special or advanced fea-
tures necessary, which are not available by utilizing Apache 2
would there been consideration for other applications. Apache
2 is a very well known web server implementation with a lot of
users. Any foreseeable problem for this project will likely have
information available from other people having faced the same
or similar problem.

Python is a powerful scripting language which is designed
around the ideals of quick and pretty code. That is, the goal
of Python’s creators was to write a language which would be
easily readable, quick to write, and have a lot of functionality.
For this project, time is of the essence. Any intelligent choice
of tool which will help to speed the process of completing one
aspect of the project will allow more time to be spent on an-
other. Python also has many useful libraries such as spidev and
RPi.GPIO which were used in this project. The relative ease
of programming in combination with the useful and relevant li-
braries made Python the clear choice for this project.

4.2 Web Interface
The web interface is hosted on the Raspberry Pi using an Apache
web server. This web server displays an interface which allows
the user to set a voltage and frequency output by the system.
The interface is simple and interactive, implemented using cgi-
scripts on the Apache web server.

Our implementation provides several functionalities.
Among these are the ability to set: voltage and frequency, sine
or triangle or square waveforms, and the ability to set a voltage
and frequency for an amount of time. The table displayed in the
figure below provides the ability to set voltage and frequency

for the number of minutes specified. The ”Go” button will cause
the first voltage and frequency to be set for the corresponding
amount of time. After the time has expired, the next voltage
and frequency will be set for the corresponding amount of time.
This process continues until the table entries are completed or
the user presses the ”Stop” button.

4.3 Web Server
The primary function of the web server is to communicate with
the Raspberry Pi. This is the primary method of control afforded
to the user by the system. The web pages displayed by the server
have the ability to control the voltage and frequency output by
the circuit.

Displaying this interface is accomplished by running an
Apache web server on the Raspberry Pi. When the user clicks
update, the server could executes a cgi-script performing the up-
date functionality.

Web Server

update.py reset.py

update_voltage_frequency.py

minigen.pypga_calling_script.bash

pga.py

9

4.4 Modifying Frequency
The frequency output by the circuit is controlled by the Mini-
gen Function Generator. Thus the software components used to
modify the output frequency are in essence a method of commu-
nication with the Minigen device.

The process begins when the user enters a new frequency
value into the web interface and clicks the ”update” button. The
update.py script parses the parameters contained in the URL re-
sulting from the user’s update request. These parameters are than
passed on to update voltage frequency.py which determines the
appropriate update procedure with which to call minigen.py.

minigen.py is a script, written in python and uses the spidev
library to communicate with the Minigen. This communication
is tricky due to the layout of the registers on the Minigen. There
are five registers: two frequency registers, two phase registers,
and one control register. A combination of these registers need
to be written to cause the Minigen to produce the correct output.

Take the typical use case for this project of modifying the
frequency. There are two frequency registers. Only one of these
are active at a time; active defined as the output of the Minigen
being derived from that register. The control register must be
written in order to change the active register. Further complicat-
ing this process is that the frequency registers are 28 bits wide,
but the Minigen only accepts 16 bit writes at a time over SPI. In
addition, there are two modes in which frequency can be written
depending on the settings of the control register.

Sorting though this madness, eventually it was found the
process for writing the frequency register is as follows. First,
modify the control register to a known value so that the inactive
register may be written and the method of writing the frequency
register is set to fine. Fine frequency modification means both
MSB and LSB of the frequency register can be modified. Sec-
ond, Preform two consecutive 16 bit writes to the Minigen with
the first bits addressing the frequency register, and the remain-
ing 14 bits containing either the LSB or MSB of the requested
frequency. Third, Preform a final write to the control register
to make the frequency register which has just been written the
active register.

The other problem which needs to be solved is, of course,
what values need to be written to the frequency register. That is
we need to convert the decimal value given to a binary string to
be written. This is accomplished by first dividing by the min-
imum step size of the Minigen. The resulting value gives the
number of steps necessary to achieve the value wanted. The
number which is written the frequency register is the number of
steps. Finally, this step value is converted and sent in the order,
MSB than LSB.

4.5 Controlling Voltage
4.5.1 Programmable Gain Amplifier(PGA)

The method of interaction with the PGA is though three GPIO
pins which encode a binary number indicating the desired gain.
The software written for the PGA than has two objectives. First,
the gain of each stage must be computed. Second, the gain of
the PGA needs to be modified.

In order to compute the gain of each amplifier, two pieces of
information are needed. What is the gain of the amplifier in this

stage and what is the requested voltage. The gain of the ampli-
fier is know at design time and the requested voltage is gained
through user interactions with the web interface. Once these
this information is known, the problem reduces to one similar to
counting change.

In the counting change problem, a person is trying to create
a monetary value with the fewest number of coins possible. This
problem is solved by using as many of the biggest value coin as
possible without going over, then using as many of the second
biggest value coin as possible without going over, ect. In this
example, the coins are analogous to the gains of the amplifiers
in each stage of the circuit while the monetary is analogous to
the requested voltage.

The approach used in our implementation is similar to that
of the counting change problem. In order to find the again of a
PGA in a given stage, we compute how many of that stage’s am-
plifier gain could fit in the overall requested voltage. All stages
conform to the following equation:

APGA = floor(
RV

GAMP
)

where APGA = gain of pga,
RV = requested voltage remaining after voltage allocated to
previous stages has been removed,
and GAMP is gain of amplifier in series with the PGA.

Modification of PGA gain requires the toggling of GPIO pins
on the Raspberry Pi. The pins should be set to a binary value
equal to the requested gain. A Python object utilizing RPi.GPIO
was created. This script preforms the necessary mapping of gain
value to GPIO pins and modifies the value of GPIO pins accord-
ingly, but there is a problem.

Root access is required to modify the values of the GPIO
pins, and the Apache 2 web server protects against cgi-bin
scripts executing commands as root. Our solution is to call a
bash script with the arguments necessary for the Python object
to set GPIO pins to a specified gain. The intermediary bash script
works by echoing a short python program and piping the output
of this echo command to the input of sudo python This circum-
vents apache’s protection while still allowing the use of Python.

5 Cost Considerations

The monetary cost of this project is fairly low. The precise costs
of components in the future are unknown, but a table of cur-
rent prices has been provided along with the necessary quantity
of each component. The projected cost of op-amps and other
electronic components is minimal. The largest expenditure of
the project is the purchase of the Raspberry Pi 2 and Minigen
Function Generator. Other necessary components are a micro
SD card, resistors, capacitors, and op amps.

In the following table, costs for capacitors and resistors are
computed at .1 dollars each.

10

Item Part Num-
ber

Quantity Price($)

Raspberry
Pi 3 Kit

- 1 49.99

Micro SD
card

- 1 9.99

Minigen
Function
Generator

AD9837 1 29.95

Resistor 10K Ohm 1 0.10
Resistor 1K Ohm 1 0.10
Resistor 330 Ohm 1 0.10
Resistor 220 Ohm 3 0.30
Capacitor 1uF 2 0.20
Capacitor .1uF 11 1.10
Capacitor .1nF 6 0.60
Op Amps OPA552 3 4.41
PGA pga 6910-3 2 8.00
Total - - 104.84

6 Testing
In order to discuss testing in a more clear way it is useful to de-
fine a number of steps in the testing process. Each of these steps
can than be developed for each of the various components to
the project. The flow of the testing process involved an iterative
process of:

1. Theorize a design

2. Acquire necessary components

• knowledge

• hardware components

3. Implement design

4. Understand problems

5. Return to step 1

It is important to recognize that many of these steps may be dif-
ferent for different components. A program written to be run by
the web server will inevitably have different testing requirements
from a new integrated circuit component.

6.1 Testing Process
Each phase of the testing process poses unique challenges. Here
are presented some of those challenges and how each phase re-
lated to specific aspects of this project. Importantly, the time it
takes to complete a testing cycle varies drastically. Hardware
components, for instance, take far longer to test as they must be
constructed on a breadboard in order that measurements may be
taken with lab equipment. The length of the testing cycle is di-
rectly proportional to the extent to which a component may be
tested. For objects with long testing cycles, much more time is
spent in the theorizing a design phase compared to objects with
shorter testing cycles.

6.1.1 Theorize a design

In this phase of development, the goal is to determine:

• A design which should work

• What knowledge is needed to complete an implementation

• What physical components will be necessary

Often times it is wise to determine the above for multiple
potential solutions. The time necessary to implement each solu-
tion can then be estimated and weighed against the potential for
success with such a design.

Which design is chosen for implementation is some com-
bination of the estimated time and potential for success. The
decision to abandon a design is often due to a change in one of
these factors. This change can occur either in the current design
or in one of the alternative designs. An example which might
motivate abandonment of a particular solution might be the find-
ing that a certain hardware component contained in the current
design is incapable of working at a high enough frequency to
produce the overall output.

While the theory of testing hardware and software is similar,
in practice these activities can be very different. In this project,
however, they became somewhat similar due to the fact that pro-
gram code is written in order to interact with hardware compo-
nents. In both cases, the physical output of either GPIO pins on
the Raspberry Pi or output of a circuit component must be view
on an oscilloscope.

6.1.2 Acquire necessary components

The goal of this phase is self-explanatory. The necessary compo-
nents must be acquired. While the goal may be clear and simple;
it may not be easy. The term acquisition may refer to physical
hardware, but it also refers to the knowledge necessary to im-
plement a given system. Every potential implementation has a
knowledge component. Even if the knowledge is already known
by the group as a whole, it may be useful to consolidate the in-
formation.

Fundamentally this process tries to answer the question,
”What do I need to know in order to create x result”. Where
x is the goal of the component as a whole, or x is a subgoal
which is thought to contribute to the overall goal of the com-
ponent. This phase of testing sets the theorized design against
existing knowledge. Often times it is necessary to return to the
theorizing phase and reconstitute the design given new informa-
tion which has been acquired.

Acquiring components phase has analogs in both hardware
and software domains. In the software domain, acquiring com-
ponents consists of software packages, such a Apache 2, or
knowledge assets necessary to complete a program. In the case
of this project, we needed to learn how to use and configure
apache, write Python code on the Raspberry Pi, use py-spi in
order to communicate with the Minigen, and use GPIO library
on Raspberry Pi to communicate with the PGA components.

Compare this to the hardware domain where the acquisition
of components is fairly straightforward. Components are nec-
essary to be purchased. This process takes much longer when
compared to downloading a software package. Thus, it is useful,

11

wise, and resource efficient to spend much more time in the the-
orizing a design phase. Having an increased degree of certainty
that a given component will preform as expected alleviates the
time and money required to determine that a component will not
work empirically. This certainty can be developed though sim-
ulations, or developing a mathematical description of the output
of a design.

6.1.3 Implement design

Of all the phases, this phase constitutes the largest investment.
The majority of time spent on the project is used to implement a
design. The goal of this phase is both obvious and complex.

An increased degree of efficiency may be achieved by con-
structing a minimal working example(MWE). The benefit in do-
ing this is twofold. First, a MWE is often easier to construct
compared to a version which is constructed into the other com-
ponents of the project. Second, because constructing a MWE
requires that this sample implementation not be integrated into
the rest of the project, issues which arise from the interplay be-
tween devices are not present. This helps to isolate issues which
are a product of the specific aspect of the project which is being
implemented.

Implementing designs in hardware is significantly different
compared to software. Hardware designs must be constructed
with physical components on a breadboard. These components
must be connected and measured with lab equipment in order to
determine if the components are having the correct output. All
the steps in this process take time. Other issues also exist due
to the physical nature of hardware components. A component
might be partially burned out and providing output which is not
correct, but still proving output. The difficulty with this is that
the component appears the same as it would if it were connected
incorrectly. For these reasons, the Implementing a design phase
consumes many more resources in the time and economic do-
mains compared to software implementations.

6.1.4 Understand problems

After implementation of the design is complete, it must be de-
termined whether or not the device functions as expected. Often
times this means looking at the input and output waveforms on
an oscilloscope for hardware or observing the change in state of
the GPIO pins for testing software. Once a problem has been
identified, the source of the problem must be located.

To clarify the above point, consider an example of a prob-
lem which might be observed is a difference in amplitude of the
output waveform compared to what was expected. The problem
might be any component which is connected to the measured
point. This includes components which are connected via other
components.

Often times to identify the source of an issue, it is necessary
to understand what should be the input and output of all com-
ponents in the circuit. Testing the inputs and outputs of each
component in turn moving away from the originally observed
wrong output can help to find where the origin of the problem
occurred. Perhaps the component which gives input the compo-
nent previous the the component with the observed problem is

connected incorrectly. This could cause the output of all future
components to become incorrect.

A similarity between debugging code and finding issues in
hardware implementations is the effect of mistakes. The way a
mistake propagates though a program is similar to the way mis-
takes propagate though hardware implementations. All events
after the first error are often a result of the first error. There
fore these events are also in error. Often times a good debug-
ging strategy is to approach solving the first error. The benefit in
doing this is that future errors might be solved indirectly.

6.1.5 Return to step 1

Many times it is found that designs would not work and thus this
process is reset to the beginning. This step can be dishearten-
ing, but it is wholly necessary. Emotions of anguish may cloud
a person’s judgment causing them to stick with a particular im-
plementation for far longer than what is necessary to determine
better solutions exist. Developing a control over these emo-
tions yields decisions which reduce the time taken to complete a
project and often produce better results.

Much wisdom is needed to be able to objectively evaluate
one’s current situation and determine whether it is advisable to
continue down the current path or whether The new informa-
tion gathered in the ”understanding problems” phase warrants
the construction of a new design or significant portion of design.
Often times this can be reduced to answering the following ques-
tion honestly, ”Given what is now known, is it wise to invest in
the current course of action, or is there something else which
might have an improved probability of success”

In software, returning to theorizing a consumes far fewer re-
sources compared to redesigning a hardware implementation.
In software, new packages may be downloaded nearly instan-
taneously. Compare this with hardware where new components
must be chosen, bought, and shipped. The need to redesign can
be expensive and time consuming, but often times it is wise to
do if the current design is not working as expected to such an
extent that another design would be a smarter investment.

6.2 Testing Results
Testing occurred in an iterative process as described above
throughout the semester. Each time a new design would be
reached, the steps above were used to uncover what the issues
were, how to solve them, and whether it was wise to solve them
at all. The alternative to solving current issues is establishing a
new design.

A typical testing environment includes:

• Oscilloscope

• Raspberry Pi

– Connected for monitor for web interface access
– Connected to circuit to control Minigen, PGA’s

• Multiple breadboards

– Minigen Function Generator
– PGA’s
– Summing amplifier

12

6.2.1 Known Issues

Below are some of the issues found through the course of our
testing which have not been resolved. These issues are fairly
minor compared to the overall functionality.

The current solution has some noteworthy issues which need
to be addressed. Issues are defined as unintended issues of un-
known origin. Possible reasons for each of the issues are dis-
cussed as well as the accommodations made in this implemen-
tation to lessen their impact. Potential solutions are also men-
tioned.

B23
In the current prototype, there is an ongoing issue with the Mini-
gen Function Generator. This device works as expected in most
cases. The exception occurs when bit 23 of either frequency
register is set high. This case will cause the Minigen device to
produce a 4Mhz sine wave. There is potential that the specific
Minigen device used is responsible for this bug. Further testing
is required.

The solution currently implemented is to detect conditions
which will cause the error and avert these situations problem-
atically. Whenever bit 23 is set to high in a frequency register
write, the current implementation sets bit 23 to low and sets all
less significant bits to high.

Current Draw from Raspberry Pi
Throughout the course of our testing, the Raspberry Pi turned off
at random several times. After this happened in a few different
scenarios, it was determined that this problem did occur when
an active display adapter was used and did not happen when a
passive adapter was used to connect the display. The difference
between these adapter types is, active adapters require power
while, passive adapters do not. The question becomes, ”what
about requiring more power from the Raspberry Pi creates is-
sues?”.

After doing some research on the Internet, we found several
sources which describe a relevant protection mechanism of the
Raspberry Pi. When there is more power demanded from the
Pi than the Pi can supply then the Raspberry Pi will turn off to
protect itself. This is a useful mechanism and must have saved
our test Raspberry Pi a dozen times.

The amount of power this implementation requires from the
Raspberry Pi is somewhat high. The 3.3V output rails are used
to power the Minigen Function Generator, and other GPIO pins
are also used for interacting with the PGA’s. Given these condi-
tions, it is not surprising that the Rasberry Pi protection mecha-
nism was necessary when additional power was required through
the Pi’s HDMI port.

Amplifier Circuit
Currently, the amplifier circuit is not capable of reaching the
maximum frequency or voltage requirement. Currently the max-
imum achievable frequency at which the voltage gain of the cir-
cuit has not dropped by more than 3db from it’s intended value
is around 800Khz. In other words the −3db frequency of this
circuit is 800Khz. The issue which prevented reaching a fre-
quency of 1Mhz was an insufficient gain bandwidth product of
our chosen op-amp.

The maximum voltage can also not be reached. This is due
to an insufficient slew rate of the OPA552, the current op-amp.
This op-amp is unable to change voltage fast enough to output

large amplitude waves at high frequency.

6.2.2 Possible Solutions

In the case of the current draw from the Raspberry Pi problem
and the B23 bug, it is clear how the problem might be solved.
However, in the case of the amplifier circuit the solution is non-
obvious. Possible remedies could range anywhere from a com-
plete redesign to the purchase of additional components. The
later option is more resource efficient if it is available. There
much more expensive op-amp around $150 has the necessary
specifications to fulfill the project requirements. The part num-
ber of this op-amp is 598-1449-ND. Replacing the OPA552, the
current op-amp, with this one would, in theory, allow the design
to meet all the frequency and voltage requirements.

7 Concluding Remarks
At the onset of this project, there was a lot of rapid success. Dur-
ing the first semester, much of the scripts which interact with the
circuit from the Raspberry Pi were written. We were able to
modify the frequency and communicate with the PGA’s by the
end of the first semester. The work on the amplification por-
tion of the project took significantly more time. Most of this
additional time expense came as a direct result of the number of
problems encountered.

In addition to the implementation struggles in the second
semester of this design experience came a shortage of man-
power. One group member had to drop out of school for financial
reasons. This was especially difficult to deal with as the num-
ber of people on the project was already fewer compared to the
number called for in the project description. This project origi-
nally specified that there should be three computer engineers and
three electrical engineers working on the project. Reality instead
afforded the group assigned to this project four computer engi-
neers. This eventually became three computer engineers.

Being computer engineers, our skill set lies outside the realm
of complicated circuits. Our lack of experience with building
and testing circuits designs manifested itself in the struggles con-
structing the multi-stage amplifier circuit. While the general lack
of expertise with the circuit components of the project hampered
our group significantly in the completion of the project, it was
a very good learning experience. Often times the most difficult
situations inspire the most growth.

The final state of the project is very close the the design spec-
ifications. The state does deviate in a few key aspects, but overall
the viability of the design has been proven. If the more expensive
op-amps would have been purchased, all of the design parame-
ters would have been met, at least in theory. In other words,
the limitations of the current implementation are due to op-amps
with insufficient slew rate and gain-bandwidth product.

Many of the issues which arose in this project came from
the amplifier circuit. There were many design iterations where
a new component would get introduced. This component would
always cause some problem or have an adverse effect in some
way. Eventually the component would be removed, or the de-
sign would be modified to accommodate the problems associ-
ated with the new component. Sometimes the design would even

13

be reverted to a previous configuration. Progress on the ampli-
fier circuit came in small increments. Over time, these incre-
ments summed to the nearly-functioning implementation at the
conclusion of this project.

14

A Operation Manual
A.1 Quick Setup
Here are listed the setup steps as succinctly as possible. If more
detail is required, the below Setup section covers each step in
more detail.

1. sudo raspi-config
(a) expand file system
(b) enable SPI in advanced options
(c) (optional) enable SSH in advanced options
(d) Finish ¿ Reboot

2. Acquire Project Codes
(a) git clone http://github.com/timdee/cpre492

3. Modify apache2 document directory
(a) sudo rm -r /var/www
(b) sudo ln -s /home/pi/cpre492/www /var/www

4. Enable cgi-bin
(a) sudo a2enmod cgi

5. Modify cgi-bin Directory
(a) sudo rm -r cgi-bin /usr/lib/cgi-bin
(b) sudo ln -s /home/pi/cpre492/cgi-bin /usr/lib/cgi-bin

6. Modify apache to run as user pi
(a) sudo nano /etc/apache2/envvars
(b) export APACHE RUN USER=pi
(c) export APACHE RUN GROUP=pi

7. sudo reboot

A.2 Setup
This section details the materials needed and how to set them
up. This section assumes you have nothing other than the circuit
to connect to the Raspberry Pi and the controlling code which
needs to be placed on the Raspberry Pi.

Setup includes all necessary information for the Raspberry
Pi configuration. Such information is provided for the purpose
of understanding how the system has been established in hopes
that it might be easier to modify or change in the future.

Steps:
1. Purchase a Raspberry Pi

(a) micro SD card
(b) micro USB power cord
(c) (optional) USB wifi adapter
(d) (optional) Ethernet cable

2. Install Rasbian Linux Operating System on Raspberry Pi
3. Configure Installation
4. Place circuit controlling software on the Raspberry Pi
5. Install software packages on Raspberry Pi

(a) Apache 2 Web Server
(b) RPi.GPIO
(c) spidev

6. Modify configuration files on the Raspberry Pi
7. Verify configuration

A.2.1 Purchase a Raspberry Pi

The object of this step is self-explanatory, however, there are
some useful points to note when purchasing a Raspberry Pi. Of-
ten times the Raspberry Pi is not sold with any accessories. This
means a few additional items must be purchased in order run and
use the device. The additional items which must be purchased
are: a power cord and micro SD card.

A.2.2 Install Rasbian Linux Operating System on
Raspberry Pi

It is recommended that Rasbian Linux distribution is used as the
operating system for the Raspberry Pi. This system will work
with other operating systems, but Rasbian has many of the nec-
essary libraries available at install. In addition, Rasbian is opti-
mized for the hardware of the Raspberry Pi. Other distributions
may run slower, or not have all of the correct drivers at installa-
tion. There are no current factors which would motivate the use
of another distribution.

The latest version of Rasbian can be downloaded from:
https://www.raspberrypi.org/

This website also has a lot of good documentation for the
Raspberry Pi. It can be a useful resource for troubleshooting
issues. For this purpose, there are many guides provided.

One such guide describes how to install Rasbian to the Rasp-
berry Pi. This guide can be viewed here: https://www.
raspberrypi.org/learning/noobs-install/

The previous guide describes the process of installing the
operating system with NOOBS. Another way to install Rasbian
could be as follows:

1. Acquire a micro SD card

2. Download Rasbian Linux Operating System

3. Acquire a program capable of writing an image to a micro
SD card on a computer with a micro SD card interface

4. Write the image to the micro SD card

5. Place the micro SD card in the Raspberry Pi

6. Power on the Raspberry Pi and complete configuration

In general, the processes can be summarized as writing an
image of the Rasbian Linux Operating System to an SD card.
While this brief description does not capture the nuances asso-
ciated with installation, it is enough to understand the correct
course of action.

Interfacing With the Pi During the setup process, there will
be need to interact with the Raspberry Pi. This can be done in
a couple ways. One way to interface with the Pi is to use it di-
rectly. Direct use can be done by using the HDMI output on the
Raspberry Pi to input to a monitor. A keyboard an mouse may
also be inserted into the USB ports on the Raspberry Pi. Interac-
tions using this method are similar to using a standard desktop
computer.

Another useful way to interact with the Raspberry Pi might
be to use the secure shell program (SSH). SSH allows remote
communication with the Pi as long as it is on the same network.
An example of how this might work is this, plug the power cord
and Ethernet cable into the Raspberry Pi, after the Pi has booted
fully, another computer runs the following command.

15

https://www.raspberrypi.org/
https://www.raspberrypi.org/learning/noobs-install/
https://www.raspberrypi.org/learning/noobs-install/

1 s s h [r a s p b e r r y p i i p a d d r e s s]

After running this command, the user will be present with a lo-
gin prompt. After login is complete, a command prompt will be
displayed. This will enable the user to interact with the pi as if
the interaction was direct while still being connected to the Pi
over the network.

A.2.3 Configure Installation

It is necessary to configure the installation for two reasons. First,
when the installation material was written to the installation
medium, it’s partition was only exactly the size it needed to be
in order to preform the install. In order to put additional files
on the system, the file system must be expanded. Second, this
project utilizes the SPI interface on the Raspberry Pi. In order to
use this interface, SPI module needs to be enabled.

Thankfully Rasbian Operating system provides an easy setup
script for preforming both of these actions. To run this setup
script in order to configure the installation, the following com-
mand can be executed as user Pi.

1 [p i @ r a s p b e r r y p i ˜] $ sudo r a s p i −c o n f i g

The following screen should present itself after running the
above command.

Follow the prompts in order to expand the file system. To
enable SPI, it is necessary to first select ”advanced options” fol-
lowed by ”enable SPI”. Optionally, SSH may be enable. En-
abling this option will cause an SSH server to be run on the Pi
after the next reboot. Make sure to reboot; acquiring program
code in the next step will require that the file system has been
expanded.

A.2.4 Place circuit controlling software on the Rasp-
berry Pi

In order to acquire the project code constructed to allow the
Raspberry Pi to control the rest of the circuit, the following com-
mand may be used. This command should be run in user pi’s
home directory, ”/home/pi”. The rest of the guide assumes this
location for the files. If this is not the chosen location on the
Raspberry Pi, simply use the chosen location in place of ”/home-
/pi”.

1 g i t c l o n e h t t p : / / g i t h u b . com / t i mde e / cp re492

This command will download the code from a github repos-
itory. There should now be a folder ”/home/pi/cpre492” with all
of the code and documents present. If an error occurs which in-
dicates there is no more disk space, then it is likely that rebooting
the Raspberry Pi will fix this issue.

A.2.5 Install software packages on Raspberry Pi

In order for the software written to control the circuit to preform
it’s task, a few additional software packages must be installed.
These packages are necessary for: running the web server and
modifying the values of the GPIO pins. The names of the pack-
ages are as follows

• apache2

• spidev

• RPi.GPIO

In order to install the packages, it is necessary to run the fol-
lowing command:

1 sudo ap t−g e t i n s t a l l [package name] −y

The above command will install the desired package. This
may be done for apache as follows:

1 sudo ap t−g e t apache2 −y

Note, RPi.GPIO is usually installed with the installation
medium. If it is not, the process for installing RPi.GPIO is
slightly different. The package must first be downloaded from:
https://pypi.python.org/pypi/RPi.GPIO

After the package has been downloaded, it needs to be ex-
tracted and moved to the the cgi-bin directory of the apache web
server. Such a process might look like the following:

1 [p i @ r a s p b e r r y p i ˜] $ cd Downloads
2 [p i @ r a s p b e r r y p i Downloads] $ t a r −zxv f RPi .

GPIO . t a r . gz
3 [p i @ r a s p b e r r y p i Downloads] $ mv RPi . GPIO ˜ /

apache2 / p a t h / cg i−b i n /

The process outlined above may not be necessary if
RPi.GPIO is included in the provided softwares. If this is the
case, then the above procedure may still be useful for updating
the library. This may be necessary to fix unforeseen, obscure
bugs.

A possibly old version of spidev is included with the pro-
vided codes. If an upgrade is required, the process for doing so
is similar to RPi.GPIO process. The only difference being the
package will be downloaded from a different place.

A.2.6 Modify configuration files on the Raspberry Pi

The configuration files which need to be modified are related to
Apache 2 web server. The files which need to be modified for
the following reasons. First, the apache user (www-data) does
not have the permissions necessary to run some of the library
functionalities. One solution to this issues is to run apache as a

16

https://pypi.python.org/pypi/RPi.GPIO

user which does have permissions. In this case, we choose to use
the default user, pi for this purpose.

Second, the apache package needs to be told where the files
for the web server have been placed, otherwise apache will load
the default configuration which is not what is wanted. This is an-
other simple modification to one of the configuration files There
is, however, an alternative to modifying the configuration of the
server in specifying the directory where the web server files are
located. The alternative is to create symbolic links at the de-
fault locations loaded by the web server. This option is chosen
for compatibility purposes. Taking the former approach assumes
the configuration files will be setup the same with every iteration
of apache2. This is not always the case.

Running Apache as User pi To change the run user for
apache, run the following command.

1 [p i @ r a s p b e r r y p i ˜] $ cd Downloads

This will initiate a command-line text editor which
should be used to modify the APACHE RUN USER and
APACHE RUN GROUP to be the following:

1 APACHE RUN USER = p i
2 APACHE RUN GROUP = p i

Modifying Web Site Files Location There are two relevant
directories, www and cgi-bin. The method chosen to modify
these directories are though the creation of symbolic links at the
default file locations. This may be accomplished though the fol-
lowing command sequence:

1 [p i @ r a s p b e r r y p i ˜] $ sudo rm −r / v a r /www
2 [p i @ r a s p b e r r y p i ˜] $ sudo l n −s / home / p i /

cp re492 /www / v a r /www
3 [p i @ r a s p b e r r y p i ˜] $ sudo rm −r / u s r / l i b /

cg i−b i n
4 [p i @ r a s p b e r r y p i ˜] $ sudo l n −s / home / p i /

cp re492 / cg i−b i n / u s r / l i b / cg i−b i n

A.2.7 Verify Configuration

In order to verify that the configuration is working properly,
open a web browser, type localhost in the navigation bar, and
press enter. If a web interface used to update voltage and fre-
quency values is loaded then the configuration is correct.

A.3 Demo
This section details the process by which a device which has al-
ready been setup may be showcased. An example use of the sys-
tem might be as follows. Connect the output of the circuit to the
pair of capacitive plates which will drive the dielectrophoresis
experiment. Once connected, Connect to the raspberry pi over
the local area network from any computer on the network and
use the interface to modify the voltage and frequency output of
the circuit.

Steps:

1. Power on the Raspberry Pi

2. Connect the Raspberry Pi to the network

3. The output of the circuit should connect to capacitive
plates used for dielectrophoresis

4. Acquire the IP address of the Raspberry Pi

5. Enter the IP address in the navigation bar of a web browser

6. Input the desired voltage and frequency values and click
update

7. The output of the circuit can be seen to change to the de-
sired values

A.3.1 Power on the Raspberry Pi

In order to power on the Raspberry Pi, It must be plugged into
a wall output. The power adapter for this device is the same
as any micro USB smart phone adapter. Once plugged in, The
Raspberry Pi will power up automatically.

If the Raspberry Pi is connected to a monitor, there should
be many lines of output to the screen. The powering on process
takes about a minute, so be patient. After startup has completed,
one of two scenarios will be the case. Scenario 1, the Pi boots to
a graphical user interface. If this is the case, then continue with
the succeeding steps.

If however, there is a command line displayed instead, this
is scenario 2. In scenario 2 it is necessary to log into the pi. This
may be done with the default user name and password listed be-
low.

1 # username : p i
2 # password : r a s p b e r r y

A.3.2 Connect the Raspberry Pi to the network

Connecting the Raspberry Pi to the network may be done in a
couple of way: through the Ethernet port on the Raspberry Pi,
or through a wireless network adapter connected to one of the
Raspberry Pi’s USB ports. Either method of connection will al-
low any computer on the local network to connect to the web
server running on the Raspberry Pi.

A.3.3 The output of the circuit should connect to ca-
pacitive plates used for dielectrophoresis

Ensure all of the outputs to the circuit are connected properly.
Preforming this step incorrectly can cause damage to the equip-
ment.

A.3.4 Acquire the IP address of the Raspberry Pi

Finding the Raspberry pi on the network can be somewhat tricky.
The Raspberry Pi has a display output on board. If access to this
display is available, a keyboard may be connected to the pi in
order to interact with it.

To acquire the IP address of the Raspberry Pi, login and run
the ’hostname’ command with arguments ’-i’. This command is
depicted below.

1 # hostname − i

17

The output of this command will the the IP address of the Rasp-
berry Pi on the network. Note the raspberry pi may be configured
to login automatically at start up. This depends on the installa-
tion medium.

There are other ways to acquire the IP address which involve
scanning the network from another computer on the network.
Another way would be to configure a static IP address for the
Raspberry Pi.

Configuring a static IP can be done in a few ways. One way
to accomplish this is to modify the router setup to assign the
Raspberry PI a specific IP. Another method is to configure the PI
to request a specific IP address.

A.3.5 Enter the IP address in the navigation bar of a
web browser

On any computer connected to the same network as the Rasp-
berry Pi, open a web browser. In the navigation bar of this
browser, enter the IP address retrieved from the ’hostname’ util-
ity. In the below example, The web browser is instructed to nav-
igate to localhost. This can be used to access a web server run-
ning on the current machine. If the goal is to navigate to a web
server running on a different machine, thee entering the IP ad-
dress of this machine in place of localhost will accomplish this
goal.

A.3.6 Input the desired voltage and frequency values
and click update

The web interface contains fields to input the desired frequency
and voltage values. Enter these values and click the ’update’
button. Doing so will cause scripts to Run on the Raspberry Pi
that set the values of the GPIO pins in such a way that the output
is produced by the circuit. There is also a Radio Button group
which will allow the output waveform to be modified among tri-
angle, square, and sine.

A.3.7 The output of the circuit can be seen to change
to the desired values

After the ’update’ button is pressed, the output of the circuit will
be modified to the closest possible values. The voltage and fre-
quency resolution are limited, thus the output may not be exactly
the value entered.

After update is pressed, the web interface will be re-
displayed. This will allow the modification of voltage and fre-
quency again.

18

B Initial Designs

This section covers the designs that have been tried throughout
the course of the project. These were problems with each of
these designs which motivated a change from that design to a
more resent design. Designs are presented in roughly chrono-
logical order in each section to perhaps make it more clear what
motivated a particular design choice. Each component under-
went various adaptations over the duration of the project.

In an introductory economics class, it is common that stu-
dents are taught about sunk costs. Sunk costs refer to those
costs which have already been incurred and cannot be recovered.
These classes teach that suck costs should not be considered in
making future investments. In other words, one should not ask
themselves the extent of current investment down a particular
path. Rather, one should ask, given what is known now, which
investment is more intelligent.

While economics classes teach about sunk costs in the con-
text of monetary investment, the same logic may be applied to
other domains. In the case of this project, the investment cap-
ital is time and energy. Regardless of how much energy has
been invested in a particular design, it is necessary to evaluate
alternatives to that design. If these alternatives than look better
given what is known about both designs than the design should
be modified accordingly to fit the alternative design.

Throughout the course of this project, several components
needed to be redesigned. Below is some mention of these de-
signs and the issues encountered which motivated deviation from
them.

B.1 Frequency Control

The Raspberry pi is capable of producing square waves by turn-
ing the GPIO pins on and off rapidly. We can use this function-
ality to produce a wave of the frequency indicated by the user.
The GPIO pins can also be used to set the voltage by communi-
cating with the circuit how much the output waveform should be
amplified. The downside to this approach is the analog circuit
component will need to be more complex. The analog circuit
needs to output a sine wave. With this approach we would need
to integrate the square wave produced by the GPIO pin.

There exist alternatives to using the GPIO pins to generate a
signal with a given frequency. We could instead use the GPIO
pins on the raspberry pi to communicate with a small signal gen-
erator, such as sparkfun.coms Minigen Function Generator. This
would make programming the Raspberry pi more complex, but
could lead to higher quality waveforms. Producing a sine wave
using the Minigen signal generator is likely to to produce fewer
distortions compared to integrating a square wave produced by
the RPIs GPIO pin twice.

This design was scrapped due to the increased complexity of
programming on the Raspberry pi in conjunction with concerns
about the maximum amount of current which could be output by
the Raspberry Pi. These concerns in conjunction with the ease
of SPI communications with the Minigen drove the choice to use
the Minigen to generate the frequency of the output.

B.2 Voltage Control
B.2.1 Digital Potentiometer

The output of the digital potentiometer has 128 steps. This
Translates into our ability to set 128 different gains on our am-
plifier. We will need multiple stages of amplifier to go between
1 and 60 Vpp. The most prominent reason for this is due to the
gain bandwidth of the op-amps. We will not be able to have a
large gain while still producing a frequency of 1Mhz.

One problem we foresee with the digital potentiometer is that
it cannot handle a large amount of power. This may force us to
come up with different amplifier configurations, or use the dig-
ital potentiometer in a different way. Another way we could
possibly use this device is as an attenuator at the input to the
amplifier.

Another problem which might arise with the digital poten-
tiometer is the capacitance of the wiper. We dont have any con-
text for understanding how much this will affect the output sig-
nal. According to some preliminary calculations, we have de-
termined that the capacitance will not present a large problem.
This design was replaced by a programmable gain amplifier.

B.2.2 Transistor switch

The overall voltage output by the amplifier circuit varies be-
tween 1Vpp to 60Vpp. In our implementation, this range is seg-
mented into three parts of 20Vpp each. Each of the three seg-
ments are input to a summing amp to create up to 60Vpp overall.

A PGA is used for fine adjustment of one 20Vpp range while
the other two ranges are either 20Vpp or 0Vpp. In other words,
there ranges are turned on or off.

The original design for turning on and off the ranges required
that a BJT transistor switch circuit be used. The intent was for
this circuit to have either 20Vpp or 0Vpp depending on a GPIO
pin from the Raspberry Pi. This design did not work as intended.
Even when the transistors were off there was still current leak-
age. This current leakage caused problems when input to the
summing amplifier. For this reason, the BJT transistor switch
ciruits were replaced with solid state relays.

B.2.3 Relay

The proposed use for the relays was similar to the to the transis-
tor switch. The advantage the relays have is the use of an internal
led to allow or disallow current though the relay. One way this
might work is by connecting a GPIO pin from the Raspberry Pi
to the led pin on the relay. Setting this GPIO pin to high would
then cause the led to shine allowing the signal from the Minigen
to flow through the relay.

The overall voltage range, 1Vpp to 60Vpp, is divided into
three 20Vpp ranges. The relay’s have two states, on and off,
which allow for moment between the ranges. When on, the in-
put the the Amplifier circuit is amplified to 20Vpp. This 20Vpp
signal is input to the summing amplifier. There are two of these
relay circuits used. Turning them on or off allows the voltage
range to be chosen. These relay circuits are controlled by GPIO
pins on the Raspberry Pi.

The problem which occurred with this solution was that the
relays were incapable of operating at the desired frequency. The

19

relays began to have problems at only 25Khz . Compare this to
the required 1Mhz frequency, and it is obvious that the relays
are not a good solution.

B.3 Amplification Stages
The initial design for the amplification stages utilized three
stages. Two of these stages were used to increase the voltage
by a constant amount while the third stage is used to adjust the
voltage within the range. This give the variability of one pga
multiplied by the number of stages, in this case three were used.

There are three 20Vpp voltage ranges. Which range being
acted in is chosen by the relay circuits. Within a given range,
however, a PGA is used to control the voltage output. In our im-
plementation, a PGA has control over a 20Vpp range. The PGA
has 8 steps within this range. This Device is controlled by the
SPI interface on the Raspberry Pi.

The problem with this design which motivated change was
the switches used to increase the voltage by 20Vpp would intro-
duce noise into the signal. Another issue with this design was
that it used the PGA’s in a very limited way. Theoretically, if all
PGA steps were able to be used for each step of the other PGA’s
this gives 37 = 343 steps. This means we have reduced the num-
ber of possible steps by a factor of 49 in order to accomplish this
design; better implementations must exist.

20

C Other Considerations
An argument can be made that there cannot be a truly accurate
model of life. Any such model with an infinite degree of accu-
racy would need to contain the model of life within it. And that
model would then need to contain the model of the model. This
is scenario is impossible and illustrates why it is necessary to
develop simplified models.

Every model is based in reality, but the model is not reality.
Sometimes simplifications are made in the construction of the
model which mask some of the issues which can arise if it turns
out this simplification was not valid in the use scenario.

The project description for this industry project determined
it was advisable for the group working on it to have three com-
puter engineers and three electrical engineers. Instead, our orig-
inal group consisted of four computer engineers. After the first
semester of this project, one of our group members dropped
leaving only three computer engineers. As a group we were able
to accomplish most of the goals for the project. Especially the
goals more central to the topics covered in the undergraduate
computer engineering work at Iowa State University.

The fundamental issue with the portions of the project more
suited to an electrical engineer is our models are oversimplifica-
tions of the physical circuit components. Being unable to model
the circuit accurately at the design phase led to a lot of unnec-
essary implementation time. Where this is a lot of experiential
learning in such a process there is also great expense in the time
domain. This coupled with a lack of advanced knowledge about
circuits in general led our group the have a tough time with the
circuits component.

One instance where our group’s oversimplification of com-
ponents hampered progress was in the design of the amplifica-
tion portion of the circuit. We originally intended that the am-
plification would happen in three stages. The op-amp chosen
to preform the amplification turned out to only work for gains
greater than 5 unless capacitors were used to connect the invert-
ing input and output to ground. A capacitor also needed to be
used in the feedback loop. We need a gain slightly over unity,
thus the use of this is necessary. These capacitors did indeed
make the op-amp work at the gain we need, but they have the

adverse effect of turning the op-amp into a filter and applying a
phase shift the the output of the op-amp.

This scenario presented us with a choice, either abandon the
current op-amp, or try to design all the stages such that the cutoff
frequency is greater than 1Mhz with a phase shift equal to the
other stages. Given that we couldn’t find any other op-amps in
our price range which met the slew-rate, bandwidth, and voltage
rail requirements of our project, the later was chosen. This made
designing the stages significantly more difficult. For this rea-
son we decided to only use two stages as this would be easier to
match up precisely. With three stages it would be very difficult
to create a uniform phase shift among the stages. This would
make it difficult to produce a precise output voltage.

Even though the goal was known, to design two amplifiers
with different gains having equal phase shifts, accomplishing
this was not trivial for us. Our group did not understand how
to model this circuit. Knowing this would allow us to change
components in order to modify the phase shift without changing
the gain. Eventually we found that if, in the feedback loop, we
increased the value of the resistor by the same factor which we
reduced the capacitor by we could produce a gain given by RF

RIN

while maintaining a phase shift.
Many issues throughout the semester arose due to general

lack of knowledge about circuits. One of the clearest examples
of this is occurred in the interactions among components. We did
no understand how to separate components initially. This led to
scenarios where the input, output of two components could work
perfectly, but when these components were connected in series
the output of the overall circuit did not work as expected.

The lack of experience also manifested in the amount of time
it would take for us to debug ”simple” circuit problems. We
would, for instance, see an odd wave on the oscilloscope which
might clearly indicate there wasn’t a common ground or that
the power supply wasn’t turned on (oops). Not knowing this,
we would proceed to the next logical step, staring at the circuit
for exorbitant amounts of time and checking all the connections.
Eventually we learned what certain types of oscilloscope traces
might imply about the problem, but experience would have made
this process much faster.

21

D Code

Listing 1: Bash script used to evoke GPIO library

1 # ! / b i n / bash
2
3 # open py thon t h i n g
4 cd / home / p i / cp re492 / cg i−b i n
5
6 echo −e ” i m p o r t pga\np amp=pga . pga ($2 , $3 , $4) \np amp . s e t G a i n ($1) ” | sudo py thon
7 # sudo py thon i m p o r t pga
8 # sudo py thon p amp = pga . pga ($2 , $3 , $4)
9 # sudo py thon p amp . s e t G a i n (−1)

Listing 2: Update Website Script

1 # ! / u s r / b i n / py thon2 . 7
2
3 i m p o r t c g i
4 i m p o r t c g i t b
5 i m p o r t u p d a t e v o l t a g e f r e q u e n c y
6
7 d e f p r i n t f i l e (f i l e n a m e) :
8 wi th open (f i l e n a m e , ’ r ’) a s f i l e :
9 l i n e = f i l e . r e a d l i n e ()

10
11 whi le l i n e :
12 # p r i n t ” \” ”+ l i n e +” \” ”
13 p r i n t l i n e
14 l i n e = f i l e . r e a d l i n e ()
15
16 # c r e a t e i n s t a n c e o f f i e l d s t o r a g e t o g e t v a l u e s
17 p a r a m e t e r s = c g i . F i e l d S t o r a g e ()
18
19 # g e t t h e d a t a from t h e f i e l d s
20 # u p d a t e v o l t a g e = p a r a m e t e r s . g e t v a l u e (’ u p d a t e v o l t a g e ’)
21 # u p d a t e f r e q u e n c y = p a r a m e t e r s . g e t v a l u e (’ u p d a t e f r e q u e n c y ’)
22
23 v o l t a g e v a l u e = p a r a m e t e r s . g e t v a l u e (’ v o l t a g e ’)
24 f r e q u e n c y v a l u e = p a r a m e t e r s . g e t v a l u e (’ f r e q u e n c y ’)
25
26 # Update t h e f r e q u e n c y and v o l t a g e
27 u p d a t e v o l t a g e f r e q u e n c y . u p d a t e v o l t a g e (v o l t a g e v a l u e)
28 u p d a t e v o l t a g e f r e q u e n c y . u p d a t e f r e q u e n c y (f r e q u e n c y v a l u e)
29
30 # Thi s s c r i p t i s d e s i g n e d t o c o u n t a s a t e s t
31 p r i n t ” Conten t−t y p e : t e x t / h tml \ r \n\ r \n ”
32 # p r i n t ”<html>”
33 # p r i n t ”<head>”
34 # p r i n t ”< t i t l e >CGI−Update−Procedure </ t i t l e >”
35 # p r i n t ”<head>”
36 # p r i n t ”<body>”
37 # p r i n t ”<h1>C u r r e n t Va lues :< / h1>”
38 # p r i n t ”<h3>V o l t a g e : %s V</h3>” % (v o l t a g e v a l u e)
39 # p r i n t ”<h3>Frequency : %s Khz</h3>” % (f r e q u e n c y v a l u e)

22

40 # p r i n t ”</body>”
41 # p r i n t ”</ html>”
42
43 # p r i n t o u t c s s t o be a p p l i e d
44 p r i n t ’< l i n k h r e f = ” / h tml / c s s / b o o t s t r a p . min . c s s ” r e l =” s t y l e s h e e t ” t y p e =” t e x t / c s s ”> ’
45 p r i n t ’< l i n k h r e f = ” / h tml / c s s / b o o t s t r a p−theme . min . c s s ” r e l =” s t y l e s h e e t ” t y p e =” t e x t / c s s ”> ’
46 # p r i n t f i l e (’ / home / p i / cp re492 /www/ html / c s s / b o o t s t r a p . min . c s s ’)
47 # p r i n t f i l e (’ / home / p i / cp re492 /www/ html / c s s / b o o t s t r a p−theme . min . c s s ’)
48
49 # R e p r i n t i n d e x . h tml so t h a t t h e u s e r may change t h e v o l t a g e a g a i n
50 p r i n t f i l e (’ / home / p i / cp re492 /www/ html / i n d e x . h tml ’)

Listing 3: Update Voltage and Frequency Script
1 # ! / u s r / b i n / py thon2 . 7
2
3 i m p o r t s p i d e v
4 i m p o r t min igen
5 i m p o r t s u b p r o c e s s
6 i m p o r t math
7
8 # Designed t o communicate wi th a Minigen c o n n e c t e d t o t h e GPIO p i n s
9 s p i = s p i d e v . SpiDev ()

10
11 # T e s t f u n c t i o n
12 d e f main () :
13 p r i n t ’ r u n n i n g i n t e s t mode ’
14
15 # T e s t s e t t i n g t h e f r e q u e n c y u s i n g s p i
16 u p d a t e f r e q u e n c y (3 0)
17
18 # T e s t s e t t i n g t h e v o l t a g e
19 u p d a t e v o l t a g e (” 3 ”)
20
21 # Update t h e v o l t a g e l e v e l t o t h e s p e c i f i e d v a l u e .
22 # Thi s i s n o t t h e v o l t a g e o u t p u t by t h e minigen ,
23 # I n s t e a d i t i s t h e v o l t a g e o u t p u t by t h e c i r c u i t a s a whole .
24 d e f u p d a t e v o l t a g e (v o l t a g e) :
25 # d e t e r m i n e t h e v a l u e s f o r t h e two pga ’ s based on t h e v o l t a g e
26 # pga 0 has a m p l i f i e r o f 7 . 5 g a i n a f t e r i t
27 # pga 1 has a m p l i f i e r o f 1 g a i n a f t e r i t
28 amp ga in 0 = 7 . 5 ;
29 amp ga in 1 = 1 . 0 ;
30
31 # compute v o l t a g e v a l u e s
32 p g a v o l t a g e = i n t (v o l t a g e)
33
34 # pga v o l t a g e s
35 p g a 0 g a i n = math . f l o o r (p g a v o l t a g e / amp ga in 0) ;
36 p g a 1 v o l t a g e = p g a v o l t a g e − p g a 0 g a i n ∗ amp ga in 0 ;
37
38 # pga g a i n s
39 # p g a 0 g a i n = p g a 0 v o l t a g e / amp ga in 0 ;
40 p g a 1 g a i n = p g a 1 v o l t a g e / amp ga in 1 ;
41

23

42 #TEST PRINTS FOR 2 STAGE AMPLIFIER
43 # p r i n t ” p g a v o l t a g e ” + s t r (p g a v o l t a g e)
44
45 # p r i n t ” p g a 0 v o l t a g e ” + s t r (p g a 0 v o l t a g e)
46 # p r i n t ” p g a 1 v o l t a g e ” + s t r (p g a 1 v o l t a g e)
47
48 # p r i n t ” p g a 0 g a i n ” + s t r (p g a 0 g a i n)
49 # p r i n t ” p g a 1 g a i n ” + s t r (p g a 1 g a i n)
50
51 # p r i n t ” p g a 0 g a i n s c r i p t ” + s t r (i n t (round (−1∗ p g a 0 g a i n)))
52 # p r i n t ” p g a 1 g a i n s c r i p t ” + s t r (i n t (round (−1∗ p g a 1 g a i n)))
53
54 # c a l l a s c r i p t t h a t w i l l s e t t h e pga v a l u e s
55 # be a b l e t o choose pga p i n s s e t based on t h i s c a l l
56 s u b p r o c e s s . c a l l (” . / p g a c a l l i n g s c r i p t . bash ” + s t r (i n t (round (−1∗ p g a 0 g a i n))) + ” 5 6

13” , s h e l l =True)
57 s u b p r o c e s s . c a l l (” . / p g a c a l l i n g s c r i p t . bash ” + s t r (i n t (round (−1∗ p g a 1 g a i n))) + ” 4 17

27” , s h e l l =True)
58
59 # Update t h e f r e q u e n c y t o t h e s p e c i f i e d v a l u e . Va lues a r e g i v e n i n Khz .
60 d e f u p d a t e f r e q u e n c y (f r e q u e n c y) :
61 # make an i n s t a n c e o f t h e min igen c l a s s t o h a n d l e t h e c o n n e c t i o n
62 m = minigen . min igen ()
63
64 # ask t h e min igen t o s e t t h e new f r e q u e n c y
65 m. s e t F r e q u e n c y (f l o a t (f r e q u e n c y) ∗1000)
66
67 # c l o s e t h e c o n e c t i o n
68 m. c l o s e ()
69
70 i f (n a m e == ” m a i n ”) :
71 main ()

Listing 4: Minigen Control Script
1 # ! / u s r / b i n / py thon2 . 7
2
3 i m p o r t s p i d e v
4 i m p o r t t ime
5 i m p o r t s y s
6 # Designed t o p r o v i d e some of t h e f u n c t i o n a l i t y from SparkFun MiniGen . cpp
7 # d e s i g n e d so t h a t you on ly need t o use s e t f r e q u e n c y t o s e t t h e f r e q u e n c y
8 c l a s s min igen :
9 # i n i t i a l i z e t h e c o n n e c t i o n wi th t h e min igen

10 d e f i n i t (s e l f) :
11 s e l f . s p i = s p i d e v . SpiDev ()
12
13 # open (bus , d e v i c e)
14 s e l f . s p i . open (0 , 0)
15
16 # min igen i s d r i v e n a t 40Mhz
17 # s e l f . s p i . max speed hz = 15000000
18
19 s e l f . c o n t r o l R e g = [F a l s e]∗ 16
20 s e l f . c o n t r o l R e g [16−13] = True

24

21
22 s e l f . f r eqReg0 = [F a l s e]∗32
23 s e l f . f r eqReg1 = [F a l s e]∗32
24
25 s e l f . f r eqReg0 [31−30] = True
26 s e l f . f r eqReg0 [31−14] = True
27
28 s e l f . f r eqReg1 [31−31] = True
29 s e l f . f r eqReg1 [31−15] = True
30
31 s e l f . f u d g e F a c t o r = 1
32
33 # ######### C o n t r o l R e g i s t e r 16 B i t s
34 # B i t Number Name F u n c t i o n
35 # D15 Addr1 Always 0 D15 and D14 i s t h e a d d r e s s o f t h e c o n t r o l

r e g i s t e r
36 # D14 Addr0 Always 0
37 # D13 B28 When 1 : a l l o w s a c o m p l e t e word t o be l o a d e d i n t o a f r e q r e g wi th

two c o n s e c u t i v e w r i t e . F i r s t c o n t a i n s 14 LSB , second c o n t a i n s
38 # 14 MSB. (F i r s t two b i t s i s f r e q r e g add r) C o n s e c u t i v e w r i t e s t o

t h e same f r e q r e g i s t e r i s n o t a l lowed , you must a l t e r n a t e .
39 # When 0 : C o n f i g u r e s t h e 28 b i t f r e q r e g i s a c t a s two 14 b i t r e g s .

One c o n t a i n s 14 LSB , t h e o t h e r 14MSB. Th i s a l l o w s f o r c o a r s e , o r f i n e
40 # g r a i n t u n i n g . HLB d e f i n e s which t o change .
41 #
42 #
43 #
44 # D12 HLB Thi s a l l o w s t h e u s e r t o c o n t i n i o u s l y l o a d t h e MSB or LSB of a

f r e q r e g . I g n o r i n g t h e r o t h e r 14 b i t s . When B28 = 1 , t h i s i s i g n o r e d .
45 # When 1 : Allows w r i t e t o 14 MSB
46 # When 0 : Allows w r i t e t o 14 LSB
47 #
48 #
49 #
50 # D11 FSEL S e l e c t s e i t h e r f r e q 0 o r f r e q 1
51 # D10 PSEL S e l e c t s e i t h e r phase0 o r phase1
52 # D09 r e s e r v e d 0
53 # D08 RESET When 1 : r e s e t s i n t e r n a l r e g s t o 0 . When 0 : d i s a b l e s t h e r e s e t

f u n c t i o n .
54 # D07 Sl ee p1 E n a b l e s o r d i s a b l e s MCLK
55 # D06 Sleep12 Powers down on c h i p DAC
56 # D05 OPBITEN 0
57 # D04 0
58 # D03
59 # D02 TODO
60 # D01
61 # D00
62
63 d e f chooseFreq0 (s e l f) :
64 s e l f . c o n t r o l R e g [15−11] = F a l s e
65 d e f chooseFreq1 (s e l f) :
66 s e l f . c o n t r o l R e g [15−11] = True
67 d e f enableB28 (s e l f) :
68 s e l f . c o n t r o l R e g [15−13] = True

25

69 d e f d i s a b l e B 2 8 (s e l f) :
70 s e l f . c o n t r o l R e g [15−13] = F a l s e
71 d e f enableHLB (s e l f) :
72 s e l f . c o n t r o l R e g [15−12] = True
73 d e f disableHLB (s e l f) :
74 s e l f . c o n t r o l R e g [15−12] = F a l s e
75
76 d e f s e n d C o n t r o l R e g (s e l f) :
77 controlRegNum = s e l f . b o o l L i s t T o I n t e g e r (s e l f . c o n t r o l R e g)
78 s e l f . s p i . x f e r ([controlRegNum >> 8 , controlRegNum & 0xFF])
79
80 d e f g e t C o n t r o l R e g (s e l f) :
81 re turn (s e l f . b o o l L i s t T o I n t e g e r (s e l f . c o n t r o l R e g))
82
83
84 # Frequency F u n c t i o n s
85 #
86 # Frequency R e g i s t e r s a r e s e t up as one 1 32 b i t r e g i s t e r wi th [31−30] and [15−14] d e f i n e d

t o be t h e a d d r e s s
87 #
88
89 d e f s e t F r e q R e g i s t e r (s e l f , f reqReg , isMSB , num) :
90 i f (num > 0x3FFF) :
91 re turn −1
92 b i t S t r i n g = b i n (num) [2 :] [: : − 1]
93 i f (isMSB == 1) :
94 x = 15
95 e l s e :
96 x = 31
97 f o r i i n b i t S t r i n g :
98 i f i n t (i) == 1 :
99 i f (f r eqReg == 0) :

100 s e l f . f r eqReg0 [x] = True
101 e l s e :
102 s e l f . f r eqReg1 [x] = True
103 e l s e :
104 i f (f r eqReg == 0) :
105 s e l f . f r eqReg0 [x] = F a l s e
106 e l s e :
107 s e l f . f r eqReg1 [x] = F a l s e
108 x= x − 1
109 re turn 1
110
111
112 d e f setFreq0MSB (s e l f , num) :
113 re turn s e l f . s e t F r e q R e g i s t e r (0 , 1 , num)
114
115 d e f se tFreq0LSB (s e l f , num) :
116 re turn s e l f . s e t F r e q R e g i s t e r (0 , 0 , num)
117
118 d e f setFreq1MSB (s e l f , num) :
119 re turn s e l f . s e t F r e q R e g i s t e r (1 , 1 , num)
120
121 d e f se tFreq1LSB (s e l f , num) :

26

122 re turn s e l f . s e t F r e q R e g i s t e r (1 , 0 , num)
123
124 d e f s e t E n t i r e F r e q R e g 0 (s e l f , num) :
125 a c t u a l V a l u e = s e l f . c a l c u l a t e F r e q u e n c y (num)
126 i f (a c t u a l V a l u e > 0x3FFFFFFF) :
127 re turn −1
128 s e l f . se tFreq0LSB (a c t u a l V a l u e & 0x3FFF)
129 s e l f . setFreq0MSB (a c t u a l V a l u e >> 14)
130 re turn 1
131
132 d e f s e t E n t i r e F r e q R e g 1 (s e l f , num) :
133 a c t u a l V a l u e = s e l f . c a l c u l a t e F r e q u e n c y (num)
134 i f (a c t u a l V a l u e > 0x3FFFFFFF) :
135 re turn −1
136 s e l f . se tFreq1LSB (a c t u a l V a l u e & 0x3FFF)
137 s e l f . setFreq1MSB (a c t u a l V a l u e >> 14)
138 re turn 1
139
140
141 d e f ge tF reqReg0 (s e l f) :
142 re turn (s e l f . b o o l L i s t T o I n t e g e r (s e l f . f r eqReg0))
143 d e f ge tF reqReg1 (s e l f) :
144 re turn (s e l f . b o o l L i s t T o I n t e g e r (s e l f . f r eqReg1))
145
146 d e f sendFreqReg0MSB (s e l f) :
147 sendFreqRegNum = s e l f . b o o l L i s t T o I n t e g e r (s e l f . f r eqReg0)
148 s e l f . s p i . x f e r ([sendFreqRegNum >> 24 , (sendFreqRegNum >> 16) & 0xFF])
149
150 d e f sendFreqReg0LSB (s e l f) :
151 sendFreqRegNum = s e l f . b o o l L i s t T o I n t e g e r (s e l f . f r eqReg0)
152 s e l f . s p i . x f e r ([(sendFreqRegNum >> 8) & 0xFF , (sendFreqRegNum) & 0xFF])
153
154 d e f sendFreqReg1MSB (s e l f) :
155 sendFreqRegNum = s e l f . b o o l L i s t T o I n t e g e r (s e l f . f r eqReg1)
156 s e l f . s p i . x f e r ([sendFreqRegNum >> 24 , (sendFreqRegNum >> 16) & 0xFF])
157
158 d e f sendFreqReg1LSB (s e l f) :
159 sendFreqRegNum = s e l f . b o o l L i s t T o I n t e g e r (s e l f . f r eqReg1)
160 s e l f . s p i . x f e r ([(sendFreqRegNum >> 8) & 0xFF , (sendFreqRegNum) & 0xFF])
161
162 d e f s e t F r e q u e n c y (s e l f , f r e q) :
163 i f (f r e q < 10000) :
164 re turn −1
165 s e l f . enab leB28 ()
166 s e l f . chooseF req1 ()
167 s e l f . s e n d C o n t r o l R e g ()
168 s e l f . s e t E n t i r e F r e q R e g 0 (f r e q)
169 s e l f . sendFreqReg0MSB ()
170 s e l f . sendFreqReg0LSB ()
171 s e l f . chooseF req0 ()
172 s e l f . s e n d C o n t r o l R e g ()
173 re turn 1
174
175 d e f s e t F r e q u e n c y 1 (s e l f , f r e q) :

27

176 s e l f . d i s a b l e B 2 8 ()
177 s e l f . enableHLB ()
178 s e l f . chooseF req1 ()
179 s e l f . s e n d C o n t r o l R e g ()
180
181 c a l c u l a t e d V a l u e = s e l f . c a l c u l a t e F r e q u e n c y (f r e q)
182 i f (c a l c u l a t e d V a l u e > 0x3FFF) :
183 re turn −1
184
185 MSB = (c a l c u l a t e d V a l u e >> 14) & 0x3FFF
186 s e l f . s e t F r e q R e g i s t e r (0 , 1 , MSB)
187 s e l f . sendFreqReg0MSB ()
188 s e l f . d isableHLB ()
189 s e l f . s e n d C o n t r o l R e g ()
190 LSB = c a l c u l a t e d V a l u e & 0x3FFF
191 s e l f . s e t F r e q R e g i s t e r (0 , 0 , LSB)
192 s e l f . sendFreqReg0LSB ()
193
194 s e l f . chooseF req0 ()
195 s e l f . s e n d C o n t r o l R e g ()
196
197 d e f c a l c u l a t e F r e q u e n c y (s e l f , num) :
198 # p r i n t ” C a l c u l a t e d Value : ” + s t r (i n t (num / (. 0 5 9 6))) ∗ s e l f . f u d g e F a c t o r
199 re turn i n t (num / (. 0 5 9 6)) ∗ s e l f . f u d g e F a c t o r
200
201 d e f c l o s e (s e l f) :
202 s e l f . s p i . c l o s e ()
203
204 # C o n v e r t s a b o o l e a n a r r a y t o a number
205 d e f b o o l L i s t T o I n t e g e r (s e l f , l s t) :
206 re turn i n t (’ ’ . j o i n ([’ 1 ’ i f x e l s e ’ 0 ’ f o r x i n l s t]) , 2)
207
208 # T e s t f u n c t i o n
209 d e f main () :
210 p r i n t ’ r u n n i n g i n t e s t mode ’
211 m = minigen ()
212 m. s e t F r e q u e n c y (f l o a t (s y s . a rgv [1]))
213 p r i n t ” Frequency R e g i s t e r : ” + b i n (m. ge tF reqReg0 ())
214 m. c l o s e ()
215
216
217 i f (n a m e == ” m a i n ”) :
218 main ()

Listing 5: PGA Control Script
1 # ! / u s r / b i n / py thon2 . 7
2
3 i m p o r t RPi . GPIO as GPIO
4 i m p o r t t ime
5 i m p o r t os
6 i m p o r t s y s
7
8 c l a s s pga :
9

28

10 d e f i n i t (s e l f , p in 0 , p in 1 , p i n 2) :
11 # Swi tch u s e r
12 # sudoPassword = ’ r o o t ’
13 #command = ’ sudo − i ’
14 #p = os . sys tem (’ echo %s | sudo −S %s ’ % (sudoPassword , command))
15
16 # D e f a u l t Gx p i n s
17 s e l f . pinGx = [p in 0 , p in 1 , p i n 2]
18 # s e l f . pinGx = [4 , 17 , 27]
19
20 #6910−3
21 s e l f . g a i n L i s t = [0 , −1, −2, −3, −4, −5, −6, −7]
22
23 #6910−2
24 # s e l f . g a i n t L i s t = [0 , −1, −2, −4, −8, −16, −32, −64]
25
26 #6910−3
27 # s e l f . g a i n L i s t = [0 , −1, −2, −5, −10, −20, −50, −100]
28
29
30 GPIO . se tmode (GPIO .BCM)
31 GPIO . s e t w a r n i n g s (F a l s e)
32 s e l f . u p d a t e P i n s ()
33
34
35 d e f u p d a t e P i n s (s e l f) :
36 GPIO . c l e a n u p ()
37 f o r pos i n r a n g e (0 , 3) :
38 GPIO . s e t u p (s e l f . pinGx [pos] , GPIO .OUT)
39
40 d e f s e t P in G 0 (s e l f , p i n) :
41 s e l f . pinGx [0] = p i n
42 s e l f . u p d a t e P i n s ()
43
44 d e f s e t P in G 1 (s e l f , p i n) :
45 s e l f . pinGx [1] = p i n
46 s e l f . u p d a t e P i n s ()
47
48 d e f s e t P in G 2 (s e l f , p i n) :
49 s e l f . pinGx [2] = p i n
50 s e l f . u p d a t e P i n s ()
51
52 d e f s e t G a i n L i s t (s e l f , l i s t) :
53 i f (l e n (l i s t) == 8) :
54 s e l f . g a i n L i s t = l i s t
55 re turn True
56 re turn F a l s e
57
58 d e f g e t G a i n L i s t (s e l f) :
59 re turn s e l f . g a i n L i s t
60
61 d e f p r i n t G a i n L i s t (s e l f) :
62 p r i n t s e l f . g a i n L i s t
63

29

64 # Only Allows f o r g a i n s s e t i n t h e g i v e n l i s t
65 d e f s e t G a i n (s e l f , g a i n) :
66 t r y :
67 binNum = ’ { : 03 b} ’ . f o r m a t (s e l f . g a i n L i s t . i n d e x (g a i n))
68 # p r i n t binNum
69 binNum = binNum [: : −1]
70 f o r pos i n r a n g e (0 , 3) :
71 i f i n t (binNum [pos]) == 1 :
72 GPIO . o u t p u t (s e l f . pinGx [pos] , 1)
73 e l s e :
74 GPIO . o u t p u t (s e l f . pinGx [pos] , 0)
75 e x c e p t V a l u e E r r o r :
76 p r i n t ” Gain n o t Found ”
77
78
79 d e f main () :
80 p r i n t ” Running PGA t e s t ”
81 p = pga (4 , 17 , 27)
82 p . s e t G a i n (i n t (s y s . a rgv [1]))
83
84
85 # s e l f . g a i n L i s t = [0 , −1, −2, −5, −10, −20, −50, −100]
86 i f (n a m e == ” m a i n ”) :
87 main ()

Listing 6: Reset Script

1 # ! / u s r / b i n / py thon2 . 7
2
3 # TODO t h e p u r p o s e o f t h i s s c r i p t i s t o r e s e t t h e min igen t o a d e f a u l t s t a t e
4
5
6 # Thi s s c r i p t i s d e s i g n e d t o c o u n t a s a t e s t
7 p r i n t ” Conten t−t y p e : t e x t / h tml \ r \n\ r \n ”
8 p r i n t ”<html>”
9 p r i n t ”<head>”

10 p r i n t ”< t i t l e >Rese t−Procedure </ t i t l e >”
11 p r i n t ”<head>”
12 p r i n t ”<body>”
13 p r i n t ”</body>”
14 p r i n t ”</ html>”
15
16 # r e p r i n t i n d e x . h tml
17 wi th open (’ / home / p i / s e n i o r d e s i g n /www/ i n d e x . h tml ’ , ’ r ’) a s f i l e :
18 l i n e = f i l e . r e a d l i n e ()
19
20 whi le l i n e :
21 # p r i n t ” \” ”+ l i n e +” \” ”
22 p r i n t l i n e
23 l i n e = f i l e . r e a d l i n e ()

30

	Introduction
	Project Definition
	Deliverables
	Constraints
	System Analysis

	Functional Decomposition
	Raspberry Pi
	Minigen
	Amplifier Circuit
	Programmable Gain Amplifier(PGA)
	Amplification Stages
	Summing Amplifier

	Software Components
	Technology Choices
	Web Interface
	Web Server
	Modifying Frequency
	Controlling Voltage
	Programmable Gain Amplifier(PGA)

	Cost Considerations
	Testing
	Testing Process
	Theorize a design
	Acquire necessary components
	Implement design
	Understand problems
	Return to step 1

	Testing Results
	Known Issues
	Possible Solutions

	Concluding Remarks
	Operation Manual
	Quick Setup
	Setup
	Purchase a Raspberry Pi
	Install Rasbian Linux Operating System on Raspberry Pi
	Configure Installation
	Place circuit controlling software on the Raspberry Pi
	Install software packages on Raspberry Pi
	Modify configuration files on the Raspberry Pi
	Verify Configuration

	Demo
	Power on the Raspberry Pi
	Connect the Raspberry Pi to the network
	The output of the circuit should connect to capacitive plates used for dielectrophoresis
	Acquire the IP address of the Raspberry Pi
	Enter the IP address in the navigation bar of a web browser
	Input the desired voltage and frequency values and click update
	The output of the circuit can be seen to change to the desired values

	Initial Designs
	Frequency Control
	Voltage Control
	Digital Potentiometer
	Transistor switch
	Relay

	Amplification Stages

	Other Considerations
	Code

